Quadrupole Splittings in the Mössbauer Spectra of $[Fe_4S_4(SBu^t)_4]^2$ ⁻ Salts

DAVID J. EVANS, G. JEFFERY LEIGH

AFRC-IPSR Nitrogen Fixation Laboratory at the University of Sussex, Brighton, BNI 9RQ, U.K.

ANDREW HOULTON and JACK SILVER

Department of Chemistry, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.

(Received December 23, 1987)

Mössbauer spectroscopy has been used extensively to characterize $Fe₄S₄$ clusters, both in complexes and in metalloproteins [l]. It is clear that the precise geometry of an Fe_4S_4 cluster is a function of the grouping bound to the iron (generally a thiolate) though it also varies with the counter cation to some degree [2]. We report here a strong dependence of the Mössbauer quadrupole splitting on the counter cation in a series of salts of $[Fe_4S_4(SBu^t)_4]^{2-}$

The isomer shift, δ , is a measure of the s-electron density at the iron nuclei, whereas the quadrupole splitting, Δ , is a measure of the asymmetry of the ligand field at the nucleus [3]. Table I shows that all the clusters (as is usual for the $Fe_4S_4^{2+}$ oxidation level) show the presence of a single kind of iron (despite formally containing two iron(H) and two iron(II1)) with similar isomer shifts. However, for these salts of $[Fe_4S_4(SBu')_4]^2$ the quadrupol splitting covers a surprisingly large range, from 0.78 mm s⁻¹ at one extreme to 1.22 mm s⁻¹ at the other. There seems a rough correlation with size, the smaller the cation, the smaller the splitting.

The implication of these data is that there must be a mechanism whereby the cation in the crystal disturbs the ligand field around the iron atoms. It is not clear what this mechanism is or how it operates, though a consideration of crystal packing forces

TABLE I. Mössbauer Parameters for Q_2 [Fe₄S₄(SBu^t)₄] at 77 K

$\mathbf O$	δ (mm s ⁻¹)	Δ (mm s ⁻¹)	$\Gamma_{1/2}^{\ \ a}$ (mm s ⁻¹)
Me ₄ N	0.45(1)	0.78(1)	0.31(1)
Et_4N	0.43(1)	1.14(1)	0.23(1)
Bu_4N	0.44(1)	1.22(1)	0.21(1)
PPh_4	0.44(1)	0.97(1)	0.23(1)
BzNMe ₃	0.43(1)	1.10(1)	0.19(1)
$BzNEt_2$	0.43(1)	1.16(1)	0.21(1)
BzNBu₃	0.43(1)	1.18(1)	0.24(1)

a Width of band at half height.

would be useful. The reported X-ray crystal structure data for $(Et_4N)_2$ [Fe₄S₄(SBu^t)₄] and (PhCH₂NMe₃)₂- $[Fe_4S_4(SBu^t)_4]$ [4] show (i) that the two Fe_4S_4 cores are distorted from T_d symmetry to different extents and (ii) that in the latter there is a sulphidosulphur...methyl contact of only 3.55 A, considerably less that the van der Waals' separation, and absent in the former. We therefore suggest that this contact plays a role in the core distortion, and causes the smaller quadrupole splitting of the latter as compared to the former, and are currently determining the structures of $(Me_4N)_2[Fe_4S_4(SBu^t)_4]$ and $(Bu_4N)_2$ [Fe₄S₄(SBu^t)₄] to test the hypothesis.

It has been observed [5] that whereas the isomer shift of ferredoxin and high-potential iron-sulphur proteins in the $Fe_4S_4^{2+}$ oxidation level is relatively invariant at about 0.42 mm s^{-1} (cf. the isomer shifts in Table I), the quadrupole splitting is sensitive to the whole protein, and values ranging from ca. 0.9 to ca. 1.2 mm s^{-1} have been reported. However, the source of this sensitivity has not been identified, although hydrogen-bonding interactions between protein amide groups and sulphido-sulphur, and between amide groups and cysteinyl sulphur may be significant. Our observations reported here suggest that hydrogen bonding may not be limited to $N-$ H.. .S interactions, and provide a basis for establishing the mechanism of the interdependence of the protein structure and the quadrupole splitting.

Acknowledgement

We acknowledge the award of an S.E.R.C. studentship to A.H.

References

- 1 R. Cammack, D. P. E. Dickson and C. E. Johnson, in W. Lovenberg (ed.), 'Iron-Sulfur Proteins', Vol. III, Academic Press. Lonodn. 1977. P. 283.
- 2 P. G. Debrunner, E. Münck, L. Que and C. E. Schulz, in W. Lovenberg (ed.), 'Iron-Sulfur Proteins', Vol. III, Academic Press, London, 1977, p. 387.
- 3 N. N. Greenwood and C. T. Gibb, 'Mossbauer Spectroscopy', Chapman and Hall, London, 1971.
- 4 F. K. Mascharak, K. S. Hagen, J. T. Spence and R. H. Holm,Inorg. *Chim. Acta, 80, 157 (1987).*
- *5 C.* L. Thompson, C. E. Johnson, D. P. E. Dickson, R. Cammack. D. 0. Hall, U. Weser and K. K. Rao, *Biochem. J., 139, 97 (1974);* D. P. E. Dickson, C. E. Johnson, R. Cammack. M. C. W. Evans. D. 0. Hall and K. K. Rao, *Biochem. J.,'139, 105* (1974); R. N. Mullinger, R. Cammack, K. K. Rao, D. 0. Hall, D. P. E. Dickson, C. E. Johnson, J. D. Rush and A. Simopolous, *Biochem. J.. 15x,75 (1975).*

0020-1693/88/\$3.50 *0* Elsevier Sequoia/Printed in Switzerland